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ABSTRACT
In this paper, we use the method of multiple scales to investigate the perturba-
tion analysis for a weakly nonlinear second order differential equation that governs
the dynamic behavior of a micro-cantilever based on tapping mode atomic force
microscopy. Furthermore, we focus on examining two distinct categories of periodic
solutions, specifically subharmonic solutions with an order of 1

n
(n = 2, 3)). For each

type of solution, the frequency response equations, peak amplitudes and their posi-
tions, the steady state solutions, and the approximate analytical formulas are given
together with the modulation equations of the amplitude and phase. Additionally,
in order to demonstrate how the parameters affect the solution, numerical solutions
of the frequency response equations and the stability conditions are performed. The
results are shown in a variety of figures. Finally, there is a discussion and conclusion.

KEYWORDS
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1. Introduction

Atomic force microscopy (AFM), is widely regarded as a vital tool for studying mate-
rial surfaces. Because AFM can assess forces in the nanoNewton range, it has numerous
applications in the manipulation of carbon nanotubes, nanolithography, data-storage
technologies, and semiconductor devices [1, 12]. Most classical dynamical systems as
well as nonclassical dynamical systems (such as Micro and Nano-electro-mechanical
systems, or MEMS/NENS) can be studied theoretically to produce nonlinear second
order ordinary differential equations(ODEs) or a set of nonlinear coupled second order
ODEs [8, 9, 14–16]. Thus, significant research has been done to investigate the several
periodic solutions (harmonic, sub, super, sub-super, super-sub, and combinations of
harmonic solutions) of these ordinary differential equations using perturbation anal-
ysis. For instance, Elnaggar and Alhanadwah [3] presented the subharmonic solution
of order one-half for a single degree of freedom (SDOF) system with quadratic, cu-
bic, and quartic nonlinearities under parametric excitations. In addition, Yu-Xiu and
Wen-bo [18] studied analytically a 1/3 subharmonic solution for the Duffing equation.
Moreover, the subharnonic solutions and the stability for a weakly damped nonlin-
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ear quasi-periodic Mathieu equation were investigated by Guennoun and et al. [11].
Dunne [2] discussed the subharmonic solution of a nonlinear SDOF oscillator was
driven by periodic excitation. Additionally, Shooshtari and Pasha Zanoosi [17] repre-
sented the subharmonic solutions of second order weakly nonlinear ODE that repre-
sents the vibration of a mass grounded system which includes two linear and nonlin-
ear springs in series. Mahmoodi et al. [13] studied the subharmonic solutions of the
governing equation of the nonlinear flexural vibrations of piezoelectrically actuated
microcantilevers performed. In addition, Fahsi and Belhaq [10] investigated analyti-
cally the subharmonic solutions in a self-excited parametrically forced oscillator with
quadratic nonlinearity. Elnaggar et al. studied the subharmonic solutions of a Van
der Pol equation subjected to weakly nonlinear parametric and forcing excitations [4].
Moreover, the presented the subharmonic solution of a MEMS subjected to external
and parametric excitations. Additionally, Elnaggar and Khalil [7] presented the sub-
harmonic solution for nonlinear SDOF system with two distinct time-delays under an
external excitation and the subharmonic solutions of even order (12 ,

1
4) to a weakly

nonlinear second order ODE governed the motion of a MEMS were investigated by
Elnaggar et al. [6].

This article’s major focus is on the subharmonic solution of orders (12 ,
1
3). The ap-

proximate solutions are obtained through the use the multiple scales method (MMS).
The stability criteria for the steady state solutions are identified for each type of pe-
riodic solution. Further, a numerical analysis is conducted to examine the frequency
response equations and the influence specific system parameters on each of these so-
lutions. Additionally, a commentary on the figures is given.

2. Perturbation Analysis

Consider the following nonlinear second order ODE

u′′+ζu′+u+βu3=− d

(α+ u)2
+

dΣ6

30(α+ u)8
+ ε

(
fCosΩt− η

(α+ u)3
u′
)
, (1)

where α, β, d, Σ, ζ, η, Ω and f are constants; ε << 1. Eq.(1) represents the math-
ematical model of the dynamic behavior of a microcantilever-based TM-AFM with
squeeze film damping effects [19]. Wen-Ming Zhang et al. [19] solved Eq.(1) numer-
ically by using the 4th order Runge-Kutta method to investigate the characteristic
and nonlinear dynamics of a TM-AFM cantilever system. Utilizing Taylor expansion,
retained only three terms of expansion and applying the perturbation technique while
maintaining the nonlinear terms of O(ε) and the amplitude of the excitation force of
O(1), then we get the following weakly nonlinear second order ODE

u′′ + ω2
0u+ ε(2µu′ − α3u

2 + βu3 − α5uu
′ + α6u

2u′) = α1 + fCosΩt, (2)

where ω2
0 = 1− α2, 2µ = ζ + α4 = ζ + η

α3 , α1 =
dΣ6

30α8 − d
α2 , α2 =

2d
α3 − 4dΣ6

15α9 ,

α3 =
6dΣ6

5α10 − 3d
α4 , α4 =

η
α3 , α5 =

3η
α4 and α6 =

6η
α5 .

An approximate solution of Eq.(2) can be obtained by a number of perturbation
techniques (Nayfeh [14, 14]). According to MMS, the scaled times Tn can be introduced
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as:

Tn = εnt, n = 0, 1, 2, ... (3)

and differentiation with respect to the dimensionless time t, we obtain

d

dt
= D0 + εD1 + ... &

d2

dt2
= D2

0 + 2εD0D1 + ..., (4)

where Dn = ∂
∂Tn

. Now, we assume a two scale expansion for the solution of Eq. (2) in
the form

u(t; ε) = u0(T0, T1) + εu1(T0, T1) + ... (5)

and substituting from Eqs.(4) and (5) into Eq.(2), then equating the coefficients of
the same powers of ε to zero, we obtain a set of linear partial differential equations

D2
0u0 + ω2

0u0 = α1 + fCosΩt, (6)

D2
0u1 + ω2

0u1 =− 2µD0u0 − 2D1D0u0 − βu30

+ α3u
2
0 + α5u0D0u0 − α6u

2
0D0u0.

(7)

Solving Eq.(6) for u0(T0, T1), we have

u0(T0, T1) = A(T1)e
iω0T0 + Ā (T1) e

−iω0T0 + κ+ ΛCos(ΩT0), (8)

where i2 = −1, Ā is the complex conjugate of A, κ = α1

ω2
0
and Λ = f

ω2
0−Ω2 . Thus, Eq.(7)

becomes

D0
2u1 + ω2

0u1 =− 1

2
eiT0ω0(A(iω0

(
α6

(
2AĀ+ 2κ2 + Λ2

)
− 2α5κ+ 4µ

)

+ 6AβĀ− 4α3κ+ 6βκ2 + 3βΛ2) + 4iω0A
′)

− 1

8
ΛeiT0Ω(iα6Ω

(
8AĀ+ 4κ2 + Λ2

)

+ 24AβĀ− 4iα5κΩ− 8α3κ+ 12βκ2 + 3βΛ2 + 8iΩµ)

− 1

2
ΛĀeiT0(Ω−ω0) (i (α5 − 2α6κ) (ω0 − Ω)− 2α3 + 6βκ)

− 1

4
Λ2ĀeiT0(2Ω−ω0) (3β + iα6 (2Ω− ω0))

− 1

2
ΛĀ2eiT0(Ω−2ω0) (3β + iα6 (Ω− 2ω0))

− 1

4
Λ2e2iT0Ω (−iΩ (α5 − 2α6κ)− α3 + 3βκ)

− 1

8
Λ3e3iT0Ω (β + iα6Ω) +NST + cc,

(9)

where NST denotes the terms does not produce secular terms and cc denotes the complex
conjugate.
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3. Subharmonic Solution of Order 1/2

We can get the subharmonic solution of order 1/2 (the periodic solution has its least 2 of
the period of the external excitation), by putting Ω ≈ 2ω0 or

Ω = 2ω0 + εσ. (10)

Eliminating the secular terms from Eq.(9) yields

A
(
−3β

(
2κ2 + Λ2

)
+ 4κα3 − i

(
4µ− 2κα5 +

(
2κ2 + Λ2

)
α6

)
ω0

)
− 4iω0A

′

− 2Ā A2 (3β + iα6ω0)− ĀΛeiσT1 (6βκ− 2α3 − i (α5 − 2κα6) (Ω− ω0)) = 0
(11)

Eq.(11) is a differential equation in complex form. To solve it, A(T1) can be expressed in polar
form as:

A =
1

2
a(T1)e

iφ(T1), (12)

where a and φ are real functions of T1. Using Eq.(12) into Eq.(11) and separating real and
imaginary parts, we get the following modulation equations

a′ = −a(α6(a2+4κ2+2Λ2)+K1)
8 + aK3 cos(γ)(Ω−ω0)

4ω0
− aK2 sin(γ)

8ω0

aγ′ =
a(−3a2β+K4+4σω0)

4ω0
− aK3 sin(γ)(Ω−ω0)

4ω0
− aK2 cos(γ)

4ω0
,

(13)

where γ = σT1 − 2φ, K1 = 8µ − 4α5κ, K2 = 4Λ(3βκ − α3), K3 = 2Λ(α5 − 2α6κ) and
K4 = 8α3κ− 12βκ2 − 6βΛ2.

Moreover, the analytical expression of the subharmonic solution of order 1/2 can be ap-
proximated as

u = a cos
1

2
[Ωt− γ] +

f

ω2
0 − Ω2

cos[Ωt] +
α1

ω2
0

+ o(ε), (14)

where a and γ are the amplitude and phase are given by the system (13).
We can get the steady state solutions by putting a′ = γ′ = 0 in the system (13), we obtain

K3 cos(γ) (Ω− ω0)− ω0

(
α6

(
a2 + 4κ2 + 2Λ2

)
+K1

)
= K2 sin(γ)

−3a2β −K3 sin(γ) (Ω− ω0) +K4 + 4σω0 = K2 cos(γ).
(15)

Squaring and adding both equations in the system (15), we get the frequency response
equation as follows

a4
(
α2
6ω

2
0 + 9β2

)
+ a2(2K2 (α6ω0 sin(γ) + 3β cos(γ))

+ 2ω0

(
α6ω0

(
2α6

(
2κ2 + Λ2

)
+K1

)
− 12βσ

)
− 6βK4)

+ 2K2ω0 sin(γ)
(
2α6

(
2κ2 + Λ2

)
+K1

)

+ ω2
0

((
2α6

(
2κ2 + Λ2

)
+K1

)
2 + 16σ2

)

+ cos(γ) (−8K2σω0 − 2K2K4)

+ 8K4σω0 −K2
3 (Ω− ω0)

2 −K2
2 +K2

4 = 0.

(16)

Solving Eq.(16) for σ, we obtain

σ =
3a2β +K2 cos(γ)−K4

4ω0

±
√

−ω2
0 (K5 +K2 sin(γ) +K3Ω) (K5 +K2 sin(γ)−K3Ω)

4ω2
0

,

(17)
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where K5 = ω0(α6

(
a2 + 4κ2 + 2Λ2

)
+K1 +K3).

Thus, the peak amplitude ap would be verified in the following equation

(
ω0

(
α6

(
a2p + 4κ2 + 2Λ2

)
+K1 −K3

)
+K2 sin(γ) +K3Ω

)
(
ω0

(
α6

(
a2p + 4κ2 + 2Λ2

)
+K1 +K3

)
+K2 sin(γ)−K3Ω

)
= 0.

(18)

Moreover, the corresponding value of σp is given by

σp =
3a2β +K2 cos(γ)−K4

4ω0
. (19)

The stability of subharmonic solutions of order 1/2 can be examined by introduc-
ing a small perturbation to the steady state solutions, i. e. putting

a = a0 + a1, (20)

γ = γ0 + γ1, (21)

where a0 and γ0 represent the steady state solutions, a1 and γ1 represent the pertur-
bation. Substituting Eqs.(20) and (21) into the system (13) and using the steady state
conditions while maintaining the linear terms, we obtain

a′1 = a0γ1(3a2
0β−8α3κ+6β(2κ2+Λ2)−4σω0)

8ω0
− 1

4a
2
0a1α6,

γ′1 = −1
4γ1

(
α6

(
a20 + 4κ2 + 2Λ2

)
− 4α5κ+ 8µ

)
− 3a0a1β

2ω0
.

(22)

Substituting a1 = Γ1e
θT1 and γ1 = Γ2e

θT1 into the system (22), we get

6a0βΓ1 + ω0α6

(
a20 + 4κ2 + 2Λ2

)
− 4α5κ+ 4(θ + 2µ)Γ2 = 0

2ω0

(
α6a

2
0 + 4θ

)
Γ1 +K6Γ2 = 0,

(23)

where K6 = a0σω0 − a0
(
3a20β − 8α3κ+ 6β

(
2κ2 + Λ2

))
.

For the nontrivial solution, the determinant of the coefficient matrix for Γ1 and Γ2

must vanish, which leads to a quadratic equation for the eigenvalue θ

θ =− 1

4

(
α6

(
a20 + 2κ2 + Λ2

)
− 2α5κ+ 4µ

)

±
√

ω4
0 (α6 (2κ2 + Λ2)− 2α5κ+ 4µ) 2 + 3a0βK6ω2

0

4ω2
0

.

(24)

Therefore, the stability of the subharmonic solution can be examined by evaluat-
ing the sign of the real parts of the eigenvalues. Thus, the solution is asymptotically
stable if the real parts of both eigenvalues of equation (24) are less than zero.
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4. Subharmonic Solution of Order 1/3

In this case Ω ≈ 3ω0, then we can write

Ω = 3ω0 + εσ (25)

and

(Ω− 3ω0)T0 = ω0T0 + εσT0 = ω0T0 + σT1. (26)

By eliminating the secular terms from Eq.(9), we get

A
(
−3β

(
2κ2 + Λ2

)
+ 4κα3 − i

(
4µ− 2κα5 +

(
2κ2 + Λ2

)
α6

)
ω0

)

− 2A2 (3β + iα6ω0) Ā− eiT1σΛ (3β + iα6 (Ω− 2ω0)) Ā
2 − 4iω0A

′ = 0.
(27)

Using Eq.(12) into Eq.(27) and separating real and imaginary parts, we obtain the
following modulation equations:

a′ = −3a2βΛ sin(γ)
8ω0

− a(α6(a2+4κ2+2Λ2)+K7)
8 − a2K8 cos(γ)

8ω0
,

γ′ = 3a2K8 sin(γ)
8ω0

− a(β(a2+36κ2+18Λ2)−24α3κ−8σω0)
8ω0

− 9a2βΛcos(γ)
8ω0

,
(28)

where γ = σT1 − 3φ,K7 = 8µ− 4α5κ and K8 = α6Λ (Ω− 2ω0).
Moreover, the approximate analytical expression of the subharmonic solution of

order 1/3 is

u = a cos
1

3
[Ωt− γ] +

f

ω2
0 − Ω2

cos[Ωt] +
α1

ω2
0

+ o(ε), (29)

where a and γ are the amplitude and phase are given by the system (28).
Additionally, we can get the steady state solution by substituting a′ = γ′ = 0 in the

system (28), we obtain

−3ω0

(
α6

(
a2 + 4κ2 + 2Λ2

)
+K7

)
− aK9 sin(γ) = 3aK8 cos(γ),

8σω0 − β
(
a2 + 36κ2 + 18Λ2

)
+K9 + aK9 cos(γ) = −3aK8 sin(γ),

(30)

where K9 = 9βλ and K10 = 24κα3. Squaring both equations in the system (30) and
adding them, we get the frequency response equation

a4
(
9α2

6ω
2
0 + β2

)
+ 2a3K9 (3α6ω0 sin(γ) + β cos(γ))

+ a2(2(−8βσω0 + 9α6ω
2
0

(
2α6

(
2κ2 + Λ2

)
+K7

)
+ β(18β

(
2κ2 + Λ2

)

−K10))− 9K2
8 +K2

9 ) + a(6K9ω0 sin(γ)
(
2α6

(
2κ2 + Λ2

)
+K7

)

+ 2K9 cos(γ)
(
18β

(
2κ2 + Λ2

)
−K10 − 8σω0

)
) + 324β2

(
2κ2 + Λ2

)2
+ ω2

0

(
9
(
2α6

(
2κ2 + Λ2

)
+K7

)
2 + 64σ2

)

+ 16σω0

(
K10 − 18β

(
2κ2 + Λ2

))
+K10

(
K10 − 36β

(
2κ2 + Λ2

))
= 0.

(31)

Solving Eq.(31) for σ, we obtain

6
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σ =
β
(
a2 + 36κ2 + 18Λ2

)
+ aK9 cos(γ)−K10

8ω0

±
√
ω2
0 (9a

2K2
8 − (3ω0 (α6 (a2 + 4κ2 + 2Λ2) +K7) + aK9 sin(γ)) 2)

8ω2
0

.

(32)

So, the peak amplitude ap could be verified by the following equation

9a2pK
2
8 −

(
3ω0

(
α6

(
a2p + 4κ2 + 2Λ2

)
+K7

)
+ apK9 sin(γ)

)
2 = 0. (33)

In addition, the corresponding value of σp is given by

σp =
β
(
a2p + 36κ2 + 18Λ2

)
+ apK9 cos(γ)−K10

8ω0
. (34)

Furthermore, the stability of the subharmonic solutions of order 1/3 can be ex-
amined by introducing a small perturbation to the steady state solutions similar to
Eqs.(20) and (21). So, we get

a′1 = 1
8K12a1 +

a0K11

24ω0
γ1,

γ′1 = (K11−18a2
0β)

8a0ω0
a1 − 3

8

(
2α6a

2
0 +K12

)
γ1,

(35)

where K11 = 9a20β − 24α3κ + 18β
(
2κ2 + Λ2

)
− 8σω0 and K12 = −4α5κ + 8µ +

α6

(
−a20 + 4κ2 + 2Λ2

)
. Substituting by a1 = Γ1e

θT1 and γ1 = Γ2e
θT1 into system (35),

we get
3ω0 (K12 − 8θ) Γ1 + a0K11Γ2 = 0,(

K11

a0ω0
− 18a0β

ω0

)
Γ1 +

(
−6α6a

2
0 − 8θ − 3K12

)
Γ2 = 0.

(36)

For the nontrivial solution, the determinant of the coefficient matrix for Γ1 and Γ2

must vanish, which leads to a quadratic equation for the eigenvalue θ.

θ =
1

24

(
−9α6a

2
0 − 3K12

)

±
√
3

24ω2
0

√
3ω4

0

(
3α6a20 + 2K12

)
2 +K11ω2

0

(
K11 − 18a20β

)
.

(37)

Therefore, he stability of the subharmonic solution of order 1/3 can be examined by
evaluating the sign of the real part of the eigenvalues. Consequently, the solution is
stable if the real parts of both eigenvalues of equation (37) are less than zero.

5. Numerical Results and Discussion

This section investigates the numerical results in the form of the frequency re-
sponse curves obtained by solving the frequency response equations (16) and (31) while
maintaining the stability conditions (24) and (37). The numerical results are plotted
in groups of figures (1-7) and (8-14), which explain the variation of the amplitude a
with the detuning parameter σ for a given values of the other parameters where the
solid lines represent stable solutions and the dashed lines represent unstable solutions.

7
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Figures (1-7) represent the frequency response curves for the subharmonic solution
of order 1/2 for certain values of the parameters α = 0.9, β = 0.4, η = 0.006, f =
0.5,Σ = 0.2, ζ = 0.001, d = 4/27 and γ = 90.

Fig.1 shows the variation of the amplitude of the steady state solutions for different
values of α. It can be seen from this figure that by decreasing α, the curves bent to
the right of the σ axis and there exist two solutions; one of them is stable and the
other is unstable.

From Fig.2, we note that by increasing β, the curves bent to the R.H.S and we have
two solutions; one of them is stable and the other is unstable.

Figure 1. The frequency response curves
for different values of α

Figure 2. The frequency response curves
for different values of β

From Fig.3 by decreasing η, it can be seen that the inclination in the R.H.S and
there exist two solutions; one of them is stable and the other is unstable.

Fig.4 shows that by increasing f , we have two solutions; one of them is stable and
the other is unstable and the bend in the R.H.S.

Figure 3. The frequency response curves
for different values of η

Figure 4. The frequency response curves
for different values of f

8
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From Fig.5, we observe that by decreasing Σ, the curves bent to the right of the σ
axis and there exist two solutions, one of them is stable and the other is unstable.

Fig.6 shows that by decreasing ζ, the branches of the figure are unchanged. Also,
we obtain two solutions; one of them is stable and the other is unstable and the bend
in the R.H.S.

Figure 5. The frequency response curves
for different values of Σ

Figure 6. The frequency response curves
for different values of ζ

Figure 7. The frequency response curves
for different values of d

Figure 8. The frequency response curves
for different values of α

9
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Figure 9. The frequency response curves
for different values of β

Figure 10. The frequency response curves
for different values of η

From Fig.7 we observe that by increasing d, we have two solutions; one of them is
stable and the other is unstable and the bend in the R.H.S.

Figures (8-14) represent the frequency response curves for the subharmonic solution
of order 1/3 for certain values of the parameters α = 1.2, β = 0.4, η = 0.006, f = 5,Σ =
0.2, ζ = 0.001, d = 4/27 and γ = 90.

Fig.8 shows the variation of the amplitude of the steady state solutions for different
values of α. It can be seen from this figure by decreasing α that the threshold becomes
smaller and smaller and shifted to the left, the branches of the response curves diver
from each other, the curves bent to the right of the σ axis and there exist two solutions;
one of them is stable and the other is unstable.

Figure 11. The frequency response curves
for different values of f

Figure 12. The frequency response curves
for different values of Σ

From Fig.9, we note that by increasing β, the curves bent to the R.H.S, the threshold

10



Subharmonic Solutions of Order 1/n (n = 2,3) to a Weakly Nonlinear Second...	 33
Asian Journal of Statistics and Applications Rahby et al.

becomes smaller and smaller and we have two solutions, one of them is stable and the
other is unstable.

From Fig.10 by increasing η, we have two solutions, one of them is stable and the
other is unstable, the threshold becomes smaller and smaller and the inclination in
the R.H.S.

Fig.11 shows that by increasing f the response curves are not strongly affected by
small values and they are affected and shifted to the right for large values. Also, we
have two solutions for a certain value of σ; one of them is stable and the other is
unstable and the inclination in the R.H.S.

From Fig.12, we observe that by increasing Σ, the response curves are not strongly
affected by small values and they are affected and shifted to the left for large values.
Also, we have two solutions for a certain value of σ; one of them is stable and the
other is unstable and the bend in the R.H.S.

Fig.13 shows that by increasing ζ, we obtain two solutions for a certain value of
σ; one of them is stable and the other is unstable. The threshold becomes larger and
larger; the branches does not change and the bend in the R.H.S.

From Fig.14, we note that by increasing d, the curves shifted and bent to the R.H.S,
the threshold becomes larger and larger and we have two solutions; one of them is stable
and the other is unstable.

Figure 13. The frequency response curves
for different values of ζ

Figure 14. The frequency response curves
for different values of d

6. Conclusion

In this work, we investigated a perturbation analysis for a weakly nonlinear second
order differential equation based on tapping mode atomic force microscopy micro-
cantilever dynamic behavior, using the concept of multiple scales. In addition, we
concentrated on studying two other classes of periodic solutions, mainly subharmonic
solutions of order 1

n , (n = 2, 3). Together with the modulation equations of the am-
plitude and phase, each type of solution included the frequency response equations,
steady state solutions, peak amplitudes and their locations, and approximate analyt-
ical formulas. Furthermore, numerical solutions of the frequency response equations
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and the stability criteria were carried out to illustrate how the parameters impact the
results. Finally, several figures were presented to show the validity of the results.
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